Кос 1 2 сколько градусов

Опубликовано: 17.09.2024

КОСИНУС (COS α) острого угла в прямоугольном треугольнике равен отношению прилежащего катета к его гипотенузе…

Малая таблица значений тригонометрических функций (в радианах и градусах)
α (радианы) 0 π/6 π/4 π/3 π/2 π √3π/2
α (градусы) 30° 45° 60° 90° 180° 270° 360°
cos α (Косинус) 1 √3/2 √2/2 1/2 0 -1 0 1

Полная таблица косинусов для углов от 0° до 360°
Угол в градусах Cos (Косинус)
1
0.9998
0.9994
0.9986
0.9976
0.9962
0.9945
0.9925
0.9903
0.9877
10° 0.9848
11° 0.9816
12° 0.9781
13° 0.9744
14° 0.9703
15° 0.9659
16° 0.9613
17° 0.9563
18° 0.9511
19° 0.9455
20° 0.9397
21° 0.9336
22° 0.9272
23° 0.9205
24° 0.9135
25° 0.9063
26° 0.8988
27° 0.891
28° 0.8829
29° 0.8746
30° 0.866
31° 0.8572
32° 0.848
33° 0.8387
34° 0.829
35° 0.8192
36° 0.809
37° 0.7986
38° 0.788
39° 0.7771
40° 0.766
41° 0.7547
42° 0.7431
43° 0.7314
44° 0.7193
45° 0.7071
46° 0.6947
47° 0.682
48° 0.6691
49° 0.6561
50° 0.6428
51° 0.6293
52° 0.6157
53° 0.6018
54° 0.5878
55° 0.5736
56° 0.5592
57° 0.5446
58° 0.5299
59° 0.515
60° 0.5
61° 0.4848
62° 0.4695
63° 0.454
64° 0.4384
65° 0.4226
66° 0.4067
67° 0.3907
68° 0.3746
69° 0.3584
70° 0.342
71° 0.3256
72° 0.309
73° 0.2924
74° 0.2756
75° 0.2588
76° 0.2419
77° 0.225
78° 0.2079
79° 0.1908
80° 0.1736
81° 0.1564
82° 0.1392
83° 0.1219
84° 0.1045
85° 0.0872
86° 0.0698
87° 0.0523
88° 0.0349
89° 0.0175
90° 0

Таблица косинусов для углов от 91° до 180°
Угол cos (Косинус)
91° -0.0175
92° -0.0349
93° -0.0523
94° -0.0698
95° -0.0872
96° -0.1045
97° -0.1219
98° -0.1392
99° -0.1564
100° -0.1736
101° -0.1908
102° -0.2079
103° -0.225
104° -0.2419
105° -0.2588
106° -0.2756
107° -0.2924
108° -0.309
109° -0.3256
110° -0.342
111° -0.3584
112° -0.3746
113° -0.3907
114° -0.4067
115° -0.4226
116° -0.4384
117° -0.454
118° -0.4695
119° -0.4848
120° -0.5
121° -0.515
122° -0.5299
123° -0.5446
124° -0.5592
125° -0.5736
126° -0.5878
127° -0.6018
128° -0.6157
129° -0.6293
130° -0.6428
131° -0.6561
132° -0.6691
133° -0.682
134° -0.6947
135° -0.7071
136° -0.7193
137° -0.7314
138° -0.7431
139° -0.7547
140° -0.766
141° -0.7771
142° -0.788
143° -0.7986
144° -0.809
145° -0.8192
146° -0.829
147° -0.8387
148° -0.848
149° -0.8572
150° -0.866
151° -0.8746
152° -0.8829
153° -0.891
154° -0.8988
155° -0.9063
156° -0.9135
157° -0.9205
158° -0.9272
159° -0.9336
160° -0.9397
161° -0.9455
162° -0.9511
163° -0.9563
164° -0.9613
165° -0.9659
166° -0.9703
167° -0.9744
168° -0.9781
169° -0.9816
170° -0.9848
171° -0.9877
172° -0.9903
173° -0.9925
174° -0.9945
175° -0.9962
176° -0.9976
177° -0.9986
178° -0.9994
179° -0.9998
180° -1

Таблица косинусов для углов от 180° до 270°
Угол cos (косинус)
181° -0.9998
182° -0.9994
183° -0.9986
184° -0.9976
185° -0.9962
186° -0.9945
187° -0.9925
188° -0.9903
189° -0.9877
190° -0.9848
191° -0.9816
192° -0.9781
193° -0.9744
194° -0.9703
195° -0.9659
196° -0.9613
197° -0.9563
198° -0.9511
199° -0.9455
200° -0.9397
201° -0.9336
202° -0.9272
203° -0.9205
204° -0.9135
205° -0.9063
206° -0.8988
207° -0.891
208° -0.8829
209° -0.8746
210° -0.866
211° -0.8572
212° -0.848
213° -0.8387
214° -0.829
215° -0.8192
216° -0.809
217° -0.7986
218° -0.788
219° -0.7771
220° -0.766
221° -0.7547
222° -0.7431
223° -0.7314
224° -0.7193
225° -0.7071
226° -0.6947
227° -0.682
228° -0.6691
229° -0.6561
230° -0.6428
231° -0.6293
232° -0.6157
233° -0.6018
234° -0.5878
235° -0.5736
236° -0.5592
237° -0.5446
238° -0.5299
239° -0.515
240° -0.5
241° -0.4848
242° -0.4695
243° -0.454
244° -0.4384
245° -0.4226
246° -0.4067
247° -0.3907
248° -0.3746
249° -0.3584
250° -0.342
251° -0.3256
252° -0.309
253° -0.2924
254° -0.2756
255° -0.2588
256° -0.2419
257° -0.225
258° -0.2079
259° -0.1908
260° -0.1736
261° -0.1564
262° -0.1392
263° -0.1219
264° -0.1045
265° -0.0872
266° -0.0698
267° -0.0523
268° -0.0349
269° -0.0175
270° 0

Таблица косинусов для углов от 270° до 360°
Угол Cos (Косинус)
271° 0.0175
272° 0.0349
273° 0.0523
274° 0.0698
275° 0.0872
276° 0.1045
277° 0.1219
278° 0.1392
279° 0.1564
280° 0.1736
281° 0.1908
282° 0.2079
283° 0.225
284° 0.2419
285° 0.2588
286° 0.2756
287° 0.2924
288° 0.309
289° 0.3256
290° 0.342
291° 0.3584
292° 0.3746
293° 0.3907
294° 0.4067
295° 0.4226
296° 0.4384
297° 0.454
298° 0.4695
299° 0.4848
300° 0.5
301° 0.515
302° 0.5299
303° 0.5446
304° 0.5592
305° 0.5736
306° 0.5878
307° 0.6018
308° 0.6157
309° 0.6293
310° 0.6428
311° 0.6561
312° 0.6691
313° 0.682
314° 0.6947
315° 0.7071
316° 0.7193
317° 0.7314
318° 0.7431
319° 0.7547
320° 0.766
321° 0.7771
322° 0.788
323° 0.7986
324° 0.809
325° 0.8192
326° 0.829
327° 0.8387
328° 0.848
329° 0.8572
330° 0.866
331° 0.8746
332° 0.8829
333° 0.891
334° 0.8988
335° 0.9063
336° 0.9135
337° 0.9205
338° 0.9272
339° 0.9336
340° 0.9397
341° 0.9455
342° 0.9511
343° 0.9563
344° 0.9613
345° 0.9659
346° 0.9703
347° 0.9744
348° 0.9781
349° 0.9816
350° 0.9848
351° 0.9877
352° 0.9903
353° 0.9925
354° 0.9945
355° 0.9962
356° 0.9976
357° 0.9986
358° 0.9994
359° 0.9998
360° 1

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите нужную часть таблицы, на выделенном фоне нажмите правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Чему равен косинус 30? …

— Ищем в таблице соответствующее значение. Правильный ответ: 0.866

В статье, мы полностью разберемся, как выглядит таблица тригонометрических значений, синуса, косинуса, тангенса и котангенса . Рассмотрим основное значение тригонометрических функций, от угла в 0,30,45,60,90. 360 градусов. И посмотрим как пользоваться данными таблицами в вычислении значения тригонометрических функций.
Первой рассмотрим таблицу косинуса, синуса, тангенса и котангенса от угла в 0, 30, 45, 60, 90. градусов. Определение данных величин дают определить значение функций углов в 0 и 90 градусов:

sin 0 0 =0, cos 0 0 = 1. tg 0 0 = 0, котангенс от 0 0 будет неопределенным
sin 90 0 = 1, cos 90 0 =0, ctg90 0 = 0,тангенс от 90 0 будет неопределенным

Если взять прямоугольные треугольники углы которых от 30 до 90 градусов. Получим:

sin 30 0 = 1/2, cos 30 0 = √3/2, tg 30 0 = √3/3, ctg 30 0 = √3
sin 45 0 = √2/2, cos 45 0 = √2/2, tg 45 0 = 1, ctg 45 0 = 1
sin 60 0 = √3/2, cos 60 0 = 1/2, tg 60 0 =√3 , ctg 60 0 = √3/3

Изобразим все полученные значения в виде тригонометрической таблицы:

Таблица синусов, косинусов, тангенсов и котангенсов!

тригонометрия - таблица синусов, косинусов, тангенсов и котангенсов основных углов

Если использовать формулу приведения, наша таблица увеличится, добавятся значения для углов до 360 градусов. Выглядеть она будет как:

таблица тригонометрических функций 360 градусов

Так же исходя из свойств периодичности таблицу можно увеличить, если заменим углы на 0 0 +360 0 *z . 330 0 +360 0 *z, в котором z является целым числом. В данной таблице возможно вычислить значение всех углов, соответствующими точками в единой окружности.

расширенная таблица косинусов, синусов, котантенсов и тангенсов

Разберем наглядно как использовать таблицу в решении.
Все очень прост. Так как нужное нам значение лежит в точке пересечения нужных нам ячеек. К примеру возьмем cos угла 60 градусов, в таблице это будет выглядеть как:

пример работы с тригонометрической таблицей

В итоговой таблице основных значений тригонометрических функций, действуем так же. Но в данной таблице возможно узнать сколько составит тангенс от угла в 1020 градусов, он = -√3 Проверим 1020 0 = 300 0 +360 0 *2. Найдем по таблице.

находим тангенс по таблице

Для более поиска тригонометрических значений углов с точностью до минут используются таблицы Брадиса. Подробная инструкция как ими пользоваться на странице по ссылке.

Таблица Брадиса. Для синуса, косинуса, тангенса и котангенса.

Таблицы Брадиса поделены на несколько частей, состоят из таблиц косинуса и синуса, тангенса и котангенса - которая поделена на две части (tg угла до 90 градусов и ctg малых углов).

Синус и косинус

Таблица Брадиса: синусы и косинусы

tg угла начиная с 0 0 заканчивая 76 0 , ctg угла начиная с 14 0 заканчивая 90 0 .

Таблица Брадиса: тангенсы - котангенсы

tg до 90 0 и ctg малых углов.

расширенная таблица тангенсов

Разберемся как пользоваться таблицами Брадиса в решении задач.

Найдем обозначение sin (обозначение в столбце с левого края) 42 минут (обозначение находится на верхней строчке). Путем пересечения ищем обозначение, оно = 0,3040.
тригонометрия по таблице Брадиса

Величины минут указаны с промежутком в шесть минут, как быть если нужное нам значение попадет именно в этот промежуток. Возьмем 44 минуты, а в таблице есть только 42. Берем за основу 42 и воспользуемся добавочными столбцами в правой стороне, берем 2 поправку и добавляем к 0,3040 + 0,0006 получаем 0,3046.
пример - тригонометрия по таблице Брадиса

При sin 47 мин, берем за основу 48 мин и отнимаем от нее 1 поправку, т.е 0,3057 - 0,0003 = 0,3054
находим синус по таблице Брадиса

При вычислении cos работаем аналогично sin только за основу берем нижнюю строку таблицы. К примеру cos 20 0 = 0.9397
пример4 по таблице

Значения tg угла до 90 0 и cot малого угла, верны и поправок в них нет. К примеру, найти tg 78 0 37мин = 4,967
пример 5 по Брадису

а ctg 20 0 13мин = 25,83
Таблица синусов Брадиса. Пример 6

Ну вот мы и рассмотрели основные тригонометрические таблицы. Надеемся это информация была для вас крайне полезной. Свои вопросы по таблицам, если они появились, обязательно пишите в комментариях!

Содержание статьи

  1. Что такое косинус угла и как его применять в решении задач
  2. Как рассчитать косинус угла без формул
  3. Калькулятор расчета косинуса онлайн
  4. Примеры решения задач по геометрии по нахождению неизвестных величин с применением таблицы косинусов Брадиса

Таблица косинусов –

это удобное решение для проведения быстрых расчетов, когда нужно получить числовое значение косинуса того или иного угла. В статье мы узнаем, что такое косинус, чем похожи и как связаны таблица синусов и косинусов, как использовать таблицу синусов Брадиса для получения конкретных числовых значений косинуса того или иного угла.

Что такое косинус угла и как его применять в решении задач

Начнем с того, что каждый знает, что такое прямоугольный треугольник. Им называется такой треугольник, у которого один из углов (C) прямой (равен 90°), остальные два угла (? и ?) острые. Он имеет стандартное обозначение углов и сторон. Тогда, что такое косинус угла, можно рассмотреть дальше.

Стандартный прямоугольный треугольник: стороны a (BC) и b (AC) - катеты, сторона с (AB) - гипотенуза

Прямоугольный треугольник: стороны a (BC) и b (AC) – катеты, сторона с (AB) – гипотенуза

Прямой угол всегда равен 90°, острый – всегда меньше, а тупой – больше 90°

Согласно теореме косинусов, что бы рассчитать угол α или β, нужно знать длину гипотенузы (АВ) и прилежащий к этому углу катет.

Косинусэто отношение прилежащей стороны к гипотенузе:
  • cos α = b деленное на с;
  • cos β = а(BC)/с(AB) .

То есть, если вам нужно узнать, например, какой высоты делать крышу над домом, если известна ширина дома и угол наклона крыши, что бы снег не задерживался, то высоту конька рассчитать не составит труда, применяя теорему косинусов. Нужно помнить, что такие функции, как косинусы и синусы в формулах зависят от угла. Синус работает с противолежащей стороной, косинус с работает прилежащей.

C:\Users\Nataly\Desktop\Решение треугольников 4.jpg

Это тригонометрические формулы для вычисления углов в треугольнике через тригонометрические функции синус, косинус, тангенс, котангенс

Косинус – отношение прилежащего катета к гипотенузе

Если треугольник не прямоугольный, его параметры также можно рассчитать, используя теорему Евклида. Суть ее в том, что треугольник, лежащий на плоскости, и имеющий стороны а, b, с, а также углом α, который находится напротив стороны а, может быть рассчитан по следующей формуле:

а²= b²+с²-2²· b· cos α или:

Таблица косинусов | 1

Отсюда можем найти cos α, cos α =( b²+2²- а²) : 2bс.

Небольшое уточнение: если угол α менее 90°, тогда b²+2²- а² > 0, если α =90°, то b²+2²- а²=0, если α >90°,то есть угол тупой, то и b²+2²- а² таблицу синусов и косинусов π . В ней расчет идет через число π, которое делится на целое число, в зависимости от размера угла, то есть sin 30° = π : 6 или 0,5, cos 30° = √3: 2. В такой таблице есть данные косинуса 30 градусов , косинуса 45 градусов, косинуса 60 градусов, косинуса 90 градусов, косинуса 120 градусов, косинус 180 градусов, косинус 270 градусов, косинус 360 градусов, косинус 0 , а также аналогичные значения синусов.

Ниже приведена таблица косинусов, дополнительно указаны синусы в их числовом выражении.

Значение угла α (градусов) Значение угла α в радианах COS (косинус)
Косинус 0 градусов01
Косинус 15 градусовπ/120.9659
Косинус 30 градусовπ/60.866
Косинус 45 градусовπ/40.7071
Косинус 50 градусов5π/180.6428
Косинус 60 градусовπ/30.5
Косинус 65 градусов13π/360.4226
Косинус 70 градусов7π/180.342
Косинус 75 градусов5π/120.2588
Косинус 90 градусовπ/20
Косинус 105 градусов 5π/12-0.2588
Косинус 120 градусов2π/3-0.5
Косинус 135 градусов3π/4-0.7071
Косинус 140 градусов7π/9-0.766
Косинус 150 градусов5π/6-0.866
Косинус 180 градусовπ-1
Косинус 270 градусов3π/20
Косинус 360 градусов1

Калькулятор расчета косинуса онлайн

Примеры решения задач по геометрии по нахождению неизвестных величин с применением таблицы косинусов Брадиса

Пример 1: Для примера решим следующую задачу. Берем прямоугольный треугольник, у него нужно найти оба угла, но известны гипотенуза с = 12 см, сторона b = 9,2 см. По теореме косинусов C:\Users\Nataly\Desktop\Решение треугольников 4.jpg
cos α = b : с, cos α = 9,2: 12 = 0, 7667. Далее открываем таблицу Брадиса и научимся, как ею пользоваться для нахождения косинуса угла. С левой стороны таблицы мы напротив косинусов находим ближайшее значение 0, 7672, которое соответствует 39°, поднимаем линию до значения минут и находим 54′.

Но наше значение меньше табличного на 0,0006, что становит 3′. Тогда мы вычитаем эту поправку 3′, 39°54′ – 3′ = 39°51′. Второй угол находим, исходя из того, что сумма всех углов в треугольнике не должна превышать 180°. Поэтому 180° – (90° + 39°51′) = 50° 09′. Угол β = 50° 09′. Решаем задачу дальше. Ищем сторону а. Для этого мы можем использовать два способа.

  1. по формуле а²= b²+с²-2²· b· cos α находим сторону а;
  2. по формуле cos β=sinα = а: с, а = с · cos β.

Второй вариант немного проще в вычислении. Обращаемся к таблице Брадиса снова. У нас ближайшее значение 50° 06′ = 0,6414. Поправка на 3′ составляет 0, 0007. Тогда 0, 6414 + 0,0007 = 0,6421.

По условию с = 12 см, тогда а = 12 · 0,6421 = 7,7 см. Задача решена. Если значения углов простые, таблица косинусов и синусов может упростить вычисление. Можно использовать следующие тождества: sin (90°+15°) = cos 15°= cos (90°-75°) = sin 75° Функции повторяются, только нужно учитывать знак. Если нужно найти косинус 145 градусов, находим угол до 90 градусов. 180 °– 145° = 35°. Косинус 35 градусов будет 0,8192 по таблице, если это 145°, это будет значение с отрицательным значением -0,8192.

Пример 2: Рассмотрим треугольник с произвольными углами, ни один из которых не равен 90°. Мы имеем две стороны с =12 см, b = 8,2 см, а также угол α, который равен 31°12′. Найти третью сторону. Формула, которая применялась в предыдущей задаче, не подходит, так как у нас треугольник не прямоугольный (по крайней мере мы это ещё не рассчитали). Используем формулу из теоремы косинусов:

а² = b²+с²-2²· b· cos α. Косинус угла находим на пересечении угла 31° и 12′. Он равен числу 0,8554, которое мы и подставляем в формулу.

а² = 67, 24 + 144 -4 · 8,2 · 0,8554 = 211,24 – 28,07 = 183,17. Находим а = √183,17 = 13, 54 (см)

Если будет стоять задание найти ещё и углы треугольника, используем формулу:

с² = а² + b² – 2аb cos γ, отсюда cos γ = (b² + а² – с²): 2 bс. cos γ = (8,2² + 13,54² – 12²): 2· 8,2·12 = (64,24 + 183, 17 – 144): 196,8 = 0, 5255. Открываем таблицу Брадиса. Это число соответствует 58° 18′. Согласно теореме о правилах трёх углов в треугольнике находим третий угол:

180° – 58° 18′-31°12′ =89° 30′. Задача решена!

Можно не рассчитывать самому, а использовать сервис и высчитать косинус онлайн, когда регистрируешься на сайте, и любое вычисление приходит автоматически. Минус такого сервиса, его нельзя применять на экзамене по математике. В качестве справочного материала таблицы предоставляются. Естественно, надо хорошо уметь ими пользоваться, так как на экзамен отводится ограниченное количество времени.



--> -->

Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> --> Введите тригонометрическое уравнение
Решить уравнение

Тригонометрические уравнения

Уравнение cos(х) = а

Из определения косинуса следует, что \( -1 \leqslant \cos \alpha \leqslant 1 \). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.

Уравнение cos x = а, где \( |a| \leqslant 1 \), имеет на отрезке \( 0 \leqslant x \leqslant \pi \) только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> <2>\right] \); если a

Уравнение sin(х) = а

Из определения синуса следует, что \( -1 \leqslant \sin \alpha \leqslant 1 \). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.

Уравнение sin х = а, где \( |a| \leqslant 1 \), на отрезке \( \left[ -\frac<\pi><2>; \; \frac<\pi> <2>\right] \) имеет только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> <2>\right] \); если а

Уравнение tg(х) = а

Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.

Уравнение tg x = а для любого a имеет на интервале \( \left( -\frac<\pi><2>; \; \frac<\pi> <2>\right) \) только один корень. Если \( |a| \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> <2>\right) \); если а

Решение тригонометрических уравнений

Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.

Уравнения, сводящиеся к квадратным

Решить уравнение 2 cos 2 (х) - 5 sin(х) + 1 = 0

Решить уравнение 2 cos 2 (6х) + 8 sin(3х) cos(3x) - 4 = 0

Используя формулы
sin 2 (6x) + cos 2 (6x) = 1, sin(6х) = 2 sin(3x) cos(3x)
преобразуем уравнение:
3 (1 - sin 2 (6х)) + 4 sin(6х) - 4 = 0 => 3 sin 2 (6х) - 4 sin(6x) + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y 2 - 4y +1 =0, откуда y1 = 1, y2 = 1/3

Уравнение вида a sin(x) + b cos(x) = c

Решить уравнение 2 sin(x) + cos(x) - 2 = 0

Используя формулы \( \sin(x) = 2\sin\frac <2>\cos\frac<2>, \; \cos(x) = \cos^2 \frac <2>-\sin^2 \frac <2>\) и записывая правую часть уравпения в виде \( 2 = 2 \cdot 1 = 2 \left( \sin^2 \frac <2>+ \cos^2 \frac <2>\right) \) получаем

Поделив это уравнение на \( \cos^2 \frac <2>\) получим равносильное уравнение \( 3 \text^2\frac <2>- 4 \text\frac <2>+1 = 0 \)
Обозначая \( \text\frac <2>= y \) получаем уравнение 3y 2 - 4y + 1 = 0, откуда y1=1, y1= 1/3

Решить уравнение 4 sin(x) + 3 cos(x) = 5

Уравнения, решаемые разложением левой части на множители

Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

Решить уравнение sin(2х) - sin(x) = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin(x) cos(x) - sin(x) = 0. Вынося общий множитель sin(x) за скобки, получаем sin(x) (2 cos x - 1) = 0

Решить уравнение cos(3х) cos(x) = cos(2x)
cos(2х) = cos (3х - х) = cos(3х) cos(x) + sin(3х) sin(x), поэтому уравнение примет вид sin(x) sin(3х) = 0

Решить уравнение 6 sin 2 (x) + 2 sin 2 (2x) = 5
Выразим sin 2 (x) через cos(2x)
Так как cos(2x) = cos 2 (x) - sin 2 (x), то
cos(2x) = 1 - sin 2 (x) - sin 2 (x), cos(2x) = 1 - 2 sin 2 (x), откуда
sin 2 (x) = 1/2 (1 - cos(2x))
Поэтому исходное уравнение можно записать так:
3(1 - cos(2x)) + 2 (1 - cos 2 (2х)) = 5
2 cos 2 (2х) + 3 cos(2х) = 0
cos(2х) (2 cos(2x) + 3) = 0

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Тригонометрия в прямоугольном треугольнике
  • Тригонометрический круг
  • Основное тригонометрическое тождество
  • Таблица значений тригонометрических функций
  • Градусы и радианы
  • Формулы приведения
  • Теорема синусов
  • Расширенная теорема синусов
  • Теорема косинусов
  • Тригонометрические уравнения (10-11 класс)
  • Примеры решений заданий из ОГЭ

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

Тригонометрические функции в прямоугольном треугольнике

Синус угла – отношение противолежащего катета к гипотенузе.

sin α = Противолежащий катет гипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cos α = Прилежащий катет гипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tg α = Противолежащий катет Прилежащий катет

Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctg α = Прилежащий катет Противолежащий катет

Рассмотрим прямоугольный треугольник A B C , угол C равен 90 °:

sin ∠ A = C B A B

cos ∠ A = A C A B

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

sin ∠ B = A C A B

cos ∠ B = B C A B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.

Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )

На данной окружности будет три шкалы отсчета – ось x , ось y и сама окружность, на которой мы будем откладывать углы.

Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x , против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A . Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .

Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B ) и на ось игрек (точка C ) .

Отрезок O B является проекцией отрезка O A на ось x , отрезок O C является проекцией отрезка O A на ось y .

Рассмотрим прямоугольный треугольник A O B :

cos α = O B O A = O B 1 = O B

sin α = A B O A = A B 1 = A B

Поскольку O C A B – прямоугольник, A B = C O .

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :

Опускаем из точки A перпендикуляры к осям x и y . Точка B в этом случае будет иметь отрицательную координату по оси x . Косинус тупого угла отрицательный .

Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x . (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y .

Координата по оси x – косинус угла , координата по оси y – синус угла .

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный .

Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный .

sin 2 α + cos 2 α = 1

Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :

A B 2 + O B 2 = O A 2

sin 2 α + cos 2 α = R 2

sin 2 α + cos 2 α = 1

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

можно заметить, что:

sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °

sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °

sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °

sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °

cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °

cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °

cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °

cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °

Рассмотрим тупой угол β :

Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:

sin ( 180 ° − α ) = sin α

cos ( 180 ° − α ) = − cos α

tg ( 180 ° − α ) = − tg α

ctg ( 180 ° − α ) = − ctg α

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

a sin ∠ A = b sin ∠ B = c sin ∠ C

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A

b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B

c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C

Модуль геометрия: задания, связанные с тригонометрией.

Читайте также: