Что является примером анаболизма рост волос расщепление этанола гликолиз дыхание

Опубликовано: 17.09.2024

Обмен веществ и энергии. Питание. Анаболизм. Катаболизм.

Обмен веществ и энергии лежит в основе всех проявлений жизнедеятельности и представляет собой совокупность процессов превращения веществ и энергии в живом организме и обмен веществами и энергией между организмом и окружающей средой.

Для поддержания жизнедеятельности в процессе обмена веществ и энергии обеспечиваются пластические и энергетические потребности организма. Пластические потребности удовлетворяются за счет веществ, используемых для построения биологических структур, а энергетические — путем преобразования химической энергии поступающих в организм питательных веществ в энергию макроэргических (АТФ и другие молекулы) и восстановленных (НАДФ • Н — никотин-амид-адениндинуклеотидфосфат) соединений. Их энергия используется организмом для синтеза белков, нуклеиновых кислот, липидов, а также компонентов клеточных мембран и органелл клетки, для выполнения деятельности клеток, связанной с использованием химической, электрической и механической энергии.

Обмен веществ и энергии (метаболизм) в организме человека — совокупность взаимосвязанных, но разнонаправленных процессов: анаболизма (ассимиляции) и катаболизма (диссимиляции).

Обмен веществ и энергии. Питание. Анаболизм. Катаболизм.

Анаболизм — это совокупность процессов биосинтеза органических веществ, компонентов клетки и других структур органов и тканей. Анаболизм обеспечивает рост, развитие, обновление биологических структур, а также непрерывный ресинтез макроэргических соединений и их накопление.

Катаболизм — это совокупность процессов расщепления сложных молекул, компонентов клеток, органов и тканей до простых веществ (с использованием части из них в качестве предшественников биосинтеза) и до конечных продуктов метаболизма (с образованием макроэргических и восстановленных соединений).

Взаимосвязь процессов катаболизма и анаболизма основывается на единстве биохимических превращений, обеспечивающих энергией все процессы жизнедеятельности и постоянное обновление тканей организма. Сопряжение анаболических и катаболических процессов в организме могут осуществлять различные вещества, но главную роль в этом сопряжении играют АТФ, НАДФ • Н. В отличие от других посредников метаболических превращений АТФ циклически рефосфорилируется, а НАДФ • Н — восстанавливается, что обеспечивает непрерывность процессов катаболизма и анаболизма.

Обеспечение энергией процессов жизнедеятельности осуществляется за счет анаэробного (бескислородного) и аэробного (с использованием кислорода) катаболизма поступающих в организм с пищей белков, жиров и углеводов. В ходе анаэробного расщепления глюкозы (гликолиза) или ее резервного субстрата гликогена (гликогенолиза) превращение 1 моля глюкозы в 2 моля лактата приводит к образованию 2 молей АТФ. Лактат — промежуточный продукт обмена. В химических связях его молекулы аккумулировано значительное количество энергии. Энергии, образующейся в ходе анаэробного обмена, недостаточно для осуществления процессов жизнедеятельности животных организмов. За счет анаэробного гликолиза могут удовлетворяться лишь относительно кратковременные энергетические потребности клетки.

Обмен веществ и энергии. Питание. Анаболизм. Катаболизм.

В организме животных и человека в процессе аэробного обмена органические вещества, в том числе продукты анаэробного обмена, окисляются до конечных продуктов — С02 и Н20. Общее количество молекул АТФ, образующихся при окислении 1 моля глюкозы до С02 и Н20, составляет 25,5 моля. При окислении молекулы жиров образуется большее количество молей АТФ, чем при окислении молекулы углеводов. Так, при окислении 1 моля пальмитиновой кислоты образуется 91,8 моля АТФ. Количество молей АТФ, образующихся при полном окислении аминокислот и углеводов, примерно одинаково. АТФ играет в организме роль внутренней «энергетической валюты» и аккумулятора химической энергии клеток.

Основным источником энергии восстановления для реакции биосинтеза жирных кислот, холестерина, аминокислот, стероидных гормонов, предшественников синтеза нуклеотидов и нуклеиновых кислот является НАДФ • Н. Образование этого вещества осуществляется в цитоплазме клетки в процессе фосфоглюконатного пути катаболизма глюкозы. При таком расщеплении из 1 моля глюкозы образуется 12 молей НАДФ • Н.

Процессы анаболизма и катаболизма находятся в организме в состоянии динамического равновесия или временного превалирования одного из них. Преобладание анаболических процессов над катаболическими приводит к росту, накоплению массы тканей, а катаболических — к частичному разрушению тканевых структур, выделению энергии. Состояние равновесного или неравновесного соотношения анаболизма и катаболизма зависит от возраста. В детском возрасте преобладают процессы анаболизма, а в старческом — катаболизма. У взрослых людей эти процессы находятся в равновесии. Их соотношение зависит также от состояния здоровья, выполняемой человеком физической или психоэмоциональной деятельности.

Есть несколько примеры катаболизма и анаболизма у живых существ, таких как пищеварение, фотосинтез, ферментация или митоз.

Катаболизм и анаболизм - это два химических процесса клеток, которые действуют в независимых фазах и вместе образуют метаболизм живых существ. Живые существа должны получать энергию, чтобы иметь возможность жить, эта энергия получается через молекулу, называемую АТФ (аденозинтрифосфат).


Тепло генерируется во всех процессах преобразования энергии, поэтому все живые существа отдают тепло.

Катаболизм распадает молекулы на более мелкие единицы посредством ряда химических реакций, которые выделяют энергию во время этого процесса..

Катаболизм ответственен за создание энергии, необходимой анаболизму для синтеза гормонов, ферментов, сахаров и других веществ, которые вызывают рост клеток, размножение и восстановление тканей..

Анаболизм - это конструирование или реорганизация молекул посредством ряда химических реакций, делающих их более сложными. Обычно во время этого процесса использование энергии необходимо.

10 примеров катаболизма и анаболизма

5 примеров катаболизма

1- пищеварение

Поедая организм, он расщепляет органические питательные вещества на более простые в использовании компоненты для организма. При этом высвобождается энергия, которая накапливается внутри молекулы АТФ организма. Эта накопленная энергия - то, что используется для реакций в анаболической фазе.

2- Клеточное дыхание

Клеточное дыхание состоит в расщеплении крупных молекул органических соединений (главным образом глюкозы) на более мелкие, высвобождая энергию, необходимую для подпитки клеточной деятельности и выработки молекул АТФ..

При клеточном дыхании сахара (глюкоза) превращаются в молекулы АТФ. Эти молекулы АТФ находятся во всех живых существах.

3- Ферментация

Он состоит из способа получения энергии, при отсутствии кислорода, который расщепляет глюкозу. Это неполный процесс окисления.

Мышечные клетки осуществляют ферментацию молочной кислоты, когда у них мало кислорода. Это происходит, например, после выполнения физических упражнений.

Эта молочная кислота, вырабатываемая в мышечных клетках, переносится кровью в печень, где она снова преобразуется и перерабатывается обычным образом в клеточном дыхании..

4- Аэробные физические упражнения

Именно это упражнение потребляет кислород и сжигает калории и жир. В этот тип упражнений входят: езда на велосипеде, плавание, танцы или любая физическая активность, продолжительность которой равна или превышает 20 минут с умеренной интенсивностью.

Продолжительность физической активности очень важна, потому что после 20 минут активности организм испытывает изменения в использовании глюкозы и гликогена, который использует жир для поддержания энергетических потребностей организма..

Химические реакции, вызванные катаболизмом, обеспечивают организм всей энергией, необходимой ему для физической активности..

5- цикл Кребса

Это конечная фаза окисления, она также известна как цикл лимонной кислоты. Этот процесс присутствует в каждой клетке живых существ. В этом процессе клеточного дыхания белки и жиры усваиваются, превращая их в энергию.

5 примеров анаболизма

1- фотосинтез

Это процесс, используемый растениями, водорослями и некоторыми бактериями для преобразования солнечного света в химическую энергию и, таким образом, для получения питания, роста и развития..

Для проведения фотосинтеза необходим хлорофилл, который присутствует в листьях, поскольку он отвечает за поглощение достаточного количества света, чтобы его можно было сделать.

Хлорофилл - это тот, который обеспечивает зеленый цвет растениям. Он задерживает солнечный свет вместе с углекислым газом и превращает сок из сырого в переработанный, который является его пищей. В свою очередь растения производят кислород и вытесняют его через листья.

2- Синтез белка

Речь идет о создании белков из незаменимых аминокислот.

3- Углеводный синтез

Дегенерация сахаров, таких как лактоза и сахароза, при производстве глюкозы трансформируется. Весь этот процесс производится за счет стимуляции гормона инсулина.

4- Митоз

Это процесс, посредством которого отдельная клетка превращается в две идентичные клетки, это то, что известно как клеточное деление. Основной причиной митоза является рост клеток и замена уже изношенных клеток..

Это деление клеток состоит из 4 фаз: профазы, метафазы, анафазы и телофазы.

Многие клетки, когда они находятся на стадии взросления, не могут быть разделены, такие как нейроны, мышечные волокна или эритроциты.

5- Физические упражнения для наращивания мышечной массы

Чтобы нарастить мышечную массу, мышцы нужно тренировать с высокой интенсивностью короткой продолжительности, не более двух минут.

Значение анаэробного без воздуха. Этот тип упражнений улучшает мышечную силу и увеличивает способность быстро двигаться.

Некоторые из этих типов упражнений: поднятие тяжестей, спринт или прыжки со скакалкой.

Анаболизм Определение

Анаболизм в совокупности относится ко всем процессам химических реакций, которые строят большие молекулы из меньших молекул или атомов; Эти процессы также известны как анаболические процессы или анаболические пути. Противоположностью анаболизма является катаболизм множество процессов, которые разбивают большие молекулы на более мелкие. Анаболизм и катаболизм – это два типа метаболических путей. Метаболические пути представляют собой серию химических реакций, которые происходят в клетка, Анаболические пути используют энергию, в то время как катаболические пути выделяют энергию.

Функция анаболизма

Анаболические пути в клетке приводят к образованию более крупных и более сложных молекул из более мелких. Во-первых, необходимы катаболические пути для расщепления молекул питательных веществ из пищи на небольшие строительные блоки. Эти меньшие молекулы затем соединяются вместе, образуя разные, более крупные молекулы, называемые макромолекулами. Анаболические пути включают в себя ввод энергии, которая необходима для формирования химических связей между более мелкими молекулами для образования макромолекул. Молекулы, построенные из анаболизма, затем используются для создания структур в клетке или даже для создания новых клеток. Анаболизм и катаболизм контролируются циркадными ритмами, и оба они важны для развития, роста и поддержания организм Клетки

Анаболические гормоны – это химические вещества, которые вызывают рост клеток путем активации анаболических путей. Два примера анаболических гормонов – тестостерон и инсулин. Гормоны также могут быть получены искусственно в лаборатории; Вот как создаются анаболические стероиды.

Примеры анаболических процессов

Синтез белка

Белки – это макромолекулы, которые осуществляют клеточную деятельность, кодируемую генами организма. У них много различных функций в организме, включая репликацию ДНК, помощь химическим реакциям (в виде ферментов), транспортировку веществ в клетку, рост и передачу сигналов в клетке, а также обеспечение физической структуры. Каждая клетка в организме человека содержит от 1 до 3 миллиардов белков.

Белки синтезируются из более мелких молекул, называемых аминокислоты в рибосомах клетки. Каждый белок представляет собой цепь определенной последовательности аминокислот. Поскольку белки представляют собой более крупные молекулы, соединенные из более мелких, процесс синтеза белка является анаболическим.

Синтез ДНК

Дезоксирибонуклеиновая кислота, или ДНК, является генетическим материалом организма. это макромолекула состоит из более мелких молекул, называемых нуклеиновыми кислотами, которые сами состоят из нуклеотид база прикреплена к дезоксирибоза сахар и фосфат молекула, Синтез ДНК – это анаболический процесс, который происходит в ядре клетки непосредственно перед тем, как клетка делится. Он включает в себя разархивирование двойных цепей ДНК и присоединение новых подходящих нуклеотидов к каждой половине разархивированной цепочки, образуя две новые цепочки, каждая из которых содержит половину старой цепочки ДНК.

Рост костей и мышц

В более широком масштабе, рост частей тела, таких как кости и мышцы, является анаболическим. Рост кости или окостенение происходит, когда кость образуется из клеток, называемых остеокластами. Затем он минерализуется через клетки, называемые остеобластами. Этот процесс также анаболический; во время минерализации остеобласты производят кристаллы фосфата кальция, которые включаются в структуру кости, делая кости твердыми и прочными.

мускул Рост, также называемый мышечной гипертрофией, происходит, когда клетки скелетных мышц, называемые миоцитами, увеличиваются в размерах. Это происходит с помощью силовых тренировок, таких как поднятие тяжестей. Такие факторы, как пол, возраст и диета, влияют на гипертрофию. Во время гипертрофии усиливается синтез белка актина и миозина, а объем саркоплазматической жидкости в миоците увеличивается.

Анаболические стероиды

Анаболические стероиды – это андрогенные гормоны, которые являются естественными (например, тестостерон) или вырабатываются синтетически и имитируют действие тестостерона. Андрогены анаболические; они увеличивают белок в мышечных клетках, что вызывает увеличение мышечной массы. Анаболические стероиды используются для лечения определенных медицинских состояний, таких как задержка полового созревания у мальчиков, и их также можно использовать для роста мышц, для стимуляции аппетита, для получения вторичных половых признаков у трансгендерных мужчин и для лечения определенных состояний, которые могут привести к потере в мышечной массе, таких как рак и СПИД.

Однако иногда анаболические стероиды также злоупотребляют спортсменами, которые хотят быстро нарастить мышечную массу. Большинство крупных спортивных организаций запрещают допинг, использование анаболических стероидов или других препаратов, повышающих работоспособность, для предотвращения злоупотребления стероидами. Хотя использование стероидов может увеличить мышечную массу, у него также есть много побочных эффектов. Они варьируются от прыщей до высоких кровь давление на агрессию («бешеная ярость») и даже психоз. Стероиды могут влиять на структуру сердце, что может привести к застойной сердечной недостаточности или инфаркту. Они также оказывают неблагоприятное воздействие на уровень холестерина, могут задерживать рост и могут привести к печень повреждение в больших дозах.

У женщин стероиды могут вызвать маскулинизацию, которая заключается в развитии вторичных половых признаков у мужчин, таких как более глубокий голос, увеличение волос на теле, увеличение клитора (клитор у женщин гомологичны к половому члену у мужчин) и временное нарушение менструального цикла. Однако у мужчин стероиды могут вызывать феминизацию, в том числе развитие молочной железы. ткань и уменьшение размера яичка. Это происходит потому, что тестостерон может быть преобразован в эстрадиол, женский пол гормон, Эффекты маскулинизации и феминизации, как правило, уменьшаются / обращаются вспять, когда человек прекращает принимать стероиды и их уровень гормонов возвращается к нормальному.


  • катаболизм – Набор процессов, которые разбивают большие молекулы на более мелкие.
  • Метаболический путь – Серия химических реакций в клетке.
  • макромолекула – Очень большая и сложная молекула.
  • Анаболические стероиды – гормоны, используемые для лечения состояний, при которых необходимо увеличение мышечной массы; они также иногда подвергаются насилию со стороны спортсменов.

викторина

1. Что НЕ является примером анаболического процесса?A. Кости растут и минерализуются.B. Питательные вещества из пищи расщепляются для использования в химических реакциях.C. Анаболические стероиды увеличивают мышечную массу.D. ДНК синтезируется из нуклеиновых кислот.

Ответ на вопрос № 1

В верно. Анаболические процессы включают в себя создание больших молекул из меньших. Варианты A, C и D являются анаболическими процессами. Выбор B является катаболическим процессом; он описывает большие молекулы, разбивающиеся на более мелкие.

2. Какой эффект от злоупотребления анаболическими стероидами может наблюдаться только у мужчин?A. маскулинизацияB. феминизацияC. Повышенное артериальное давлениеD. Повреждение печени

Ответ на вопрос № 2

В верно. Поскольку тестостерон может превращаться в женский половой гормон эстрадиол, у мужчин, злоупотребляющих стероидами, может развиваться ткань молочной железы, а их яички могут уменьшаться. Эти эффекты все вместе называют феминизацией. Хотя использование стероидов иногда используется для лечения отсроченного полового созревания у мальчиков, выбор А является неправильным, поскольку этот вопрос относится конкретно к злоупотреблению стероидами; В этом контексте маскулинизация – это развитие мужских половых признаков у женщин, злоупотребляющих стероидами.

3. Анаболические пути _____ энергии.A. использованиеB. РелизC. Ни использовать, ни выпускать

Ответ на вопрос № 3

верно. Энергия необходима для возникновения анаболизма, потому что химические связи образуются при создании больших молекул. Во время катаболизма, противоположного анаболизму, химические связи разрушаются, и энергия высвобождается.

1. Обмен веществ происходит:
а) между внешней средой и организмом +
б) в пищеварительном тракте
в) только во внутренней среде организма

2. Основное значение пластического обмена веществ в клетках:
а) производство химической энергии в результате расщепления глюкозы
б) строительство органических веществ и накопление энергии +
в) поддержание температуры тела

3. При недостатке витамина “В-1” наблюдается:
а) отставание в росте и куриная слепота
б) рахит
в) нервный паралич +

4. Что строится в клетках человека из аминокислот:
а) собственные белки +
б) чужие белки
в) витамины

5. Из организма в окружающую среду не выводятся это вещество:
а) соль
б) вода
в) кислород +

6. Из организма в окружающую среду не выводятся это вещество:
а) мочевина
б) углеводы +
в) соль

7. Из организма в окружающую среду не выводятся это вещество:
а) вода
б) мочевина
в) аминокислота +

8. Какие продукты содержат много витамина “С”:
а) овощи и фрукты +
б) рыбий жир и яйцо
в) печень и свежее мясо

9. Белки в организме имеют это значение:
а) разрушительный для материал клетки
б) второстепенный строительный материал клетки
в) основной строительный материал клетки +

10. Белки в организме имеют это значение:
а) не участвуют в свертывании крови
б) участвуют в свертывании крови +
в) разрушительный для материал клетки

11. Метаболизм-это:
а) совокупность сложных химических реакций, направленных на расщепление и образование сложных веществ +
б) сложные химические реакции, в результате которых образуются белки
в) процесс распада сложных веществ на более простые

12. Отличие анаболизма от катаболизма:
а) катаболизм замедляет метаболизм, анаболизм – ускоряет
б) при катаболизме расщепляются вещества, при анаболизме – синтезируются высокомолекулярные вещества +
в) анаболизм замедляет метаболизм, катаболизм – ускоряет

13. В результате каких процессов образуется АТФ:
а) расщепление сложных веществ +
б) выведение веществ из организмов
в) синтез белков, жиров, углеводов

14. Молекулы АТФ:
а) не являются источником энергии
б) не участвуют в синтезе веществ
в) участвуют в синтезе веществ +

15. Молекулы АТФ:
а) являются источником тепла +
б) не участвуют в синтезе веществ
в) не являются источником тепла

16. Молекулы АТФ:
а) не являются источником энергии
б) являются источником энергии +
в) не являются источником тепла

17. Примером анаболизма является:
а) расщепление этанола
б) гликолиз
в) рост волос +

18. Обмен веществ — это процесс:
а) удаления жидких продуктов распада
б) потребления, превращения, использования, накопления и потери веществ и энергии +
в) удаления из организма непереваренных остатков

19. Функция почек:
а) удаляют из организма лишний сахар
б) превращают глюкозу в гликоген
в) удаляют жидкие продукты распада +

20. Белки, свойственные организму, строятся из:
а) углеводов
б) аминокислот +
в) жиров

21. Пластический обмен — это процесс:
а) образования в клетке веществ с накоплением энергии +
б) переваривания пищи
в) всасывания веществ в кровь

22. Почему витамины участвуют в ферментативных реакциях:
а) поступают с пищей
б) входят в состав ферментов +
в) образуются в организме человека

23. Гиподинамия способствует отложению жира в запас, так как:
а) развивается атеросклероз
б) происходит перестройка костей
в) расходуется мало энергии +

24. На что расходуется энергия, поступившая с пищей:
а) дыхание
б) рост, дыхание и другие процессы жизнедеятельности +
в) рост и дыхание

25. Авитаминоз возникает при:
а) продолжительном пребывании на солнце
б) избытке витаминов в пище
в) отсутствии в пище витаминов +

26. Основное значение воды для клеток организма:
а) придает им упругость
б) главная среда для биохимических реакций +
в) растворитель для неорганических веществ

27. Главное значение глюкозы для организма:
а) главный источник энергии +
б) ферментативная функция
в) основной стройматериал

28. Какое значение имеют соли калия и натрия для клеток:
а) придают костной ткани твердость
б) без них невозможно свертывание крови
в) имеют прямое отношение к возбудимости и проводимости возбуждения +

29. Где синтезируются белки:
а) в клетках организма +
б) во внешней среде
в) в пищеварительном тракте

30. Какие органы участвуют в теплообразовании:
а) сердце
б) мышцы +
в) почки

Обмен веществ

Обмен веществ (метаболизм) складывается из процессов расщепления и синтеза - диссимиляции и ассимиляции, постоянно протекающих в организме. Чтобы жизнь продолжалась, количество поступающей энергии должно превышать (или как минимум равняться) количеству расходуемой энергии, поэтому диссимиляция и ассимиляция поддерживают определенный баланс друг с другом.

Энергетический и пластический обмен веществ

Энергетический обмен

Энергетический обмен (диссимиляция - от лат. dissimilis ‒ несходный) - обратная ассимиляции сторона обмена веществ, совокупность реакций, которые приводят к высвобождению энергии химических связей. Это реакции расщепления жиров, белков, углеводов, нуклеиновых кислот до простых веществ.

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Обсудим этапы энергетического обмена более подробно:

    Подготовительный этап

Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.

Под действием ферментов белки расщепляются на аминокислоты, жиры - на глицерин и жирные кислоты, сложные углеводы - до простых сахаров.

Этапы энергетического обмена веществ

Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.

Кислородный этап (аэробный)

Этот этап доступен только для аэробов - организмов, живущих в кислородной среде. Из каждой молекулы ПВК, образовавшейся на этапе гликолиза, синтезируется 18 молекул АТФ - в сумме с двух ПВК выход составляет 36 молекул АТФ.

Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).

Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.

Энергетический обмен

АТФ - аденозинтрифосфорная кислота

Трудно переоценить роль в клетке АТФ - универсального источника энергии. Молекула АТФ состоит из азотистого основания - аденина, углевода - рибозы и трех остатков фосфорной кислоты.

Между остатками фосфорной кислоты находятся макроэргические связи - ковалентные связи, которые гидролизуются с выделением большого количества энергии. Их принято обозначать типографическим знаком тильда "∽".

Строение АТФ

АТФ гидролизуется до АДФ (аденозиндифосфорная кислота), а затем и до АМФ (аденозинмонофосфорная кислота). Гидролиз АТФ сопровождается выделением энергии (E) на каждом этапе и может быть представлен такой схемой:

  • АТФ + H2O = АДФ + H3PO4 + E
  • АДФ + H2O = АМФ + H3PO4 + E
  • АМФ + H2O = аденин + рибоза + H3PO4 + E

Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.

Пластической обмен

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: